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1. INTRODUCTION

This report describes work on the optimum radar signal design problem
and represents an extension of previous studies reported in [1]. The goal
of this project is the design of an adaptive radar signal capable of provid-
ing near optimum performance against a complex target having a changing as-
pect angle. Previous work included computer model ing of performance using
continuous wave and pulsed waveforms against a ten point reflector target
model. A large number of sample received signals were calculated for a
variety of azimuth angles and carrier frequencies. In addition to the com-
puter model ing of radar returns an analytic study has been carried out to
determine the signal waveform that will maximize the return for a given tar-
get orientation.

In this report results are presented of a computer search for symmetry
in the returns from complex targets and an investigation of how such sym-
metry might be used to improve system performance. Performance of a system
utilizing an empirical prediction of the optimum frequency is presented and
methods of breaking up nonsymmetrical pairs are considered.

2. TARGET CONFIGURATIONS AND PROBLEM FORMULATION

The computer simulation was expanded by implementing a near optimum
pulse envelope and by searching for any symmetry in the response as a func-
tion of angle, which would enable the radar to predict a frequency that
would give a maximum signal return. Also, targets were considered that do
not have the even symmetry that the 10 point target had.

The targets considered in this work are:

1) The standard ten point symmetric target used in the previous work, which
is shown in Figure 1.

2) A five point symmetric target, which is a simplified version of the ten
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point target used before, Figure 2.

3) An eight point symmetric target, Figure 3.

4) A three point nonsymmetric target, which is simple enough to explore
symmetry generation, Figure 4.

5) A six point nonsymmetric target, which is approximately half of the
eight point symmetric target, Figure S.

In the previous work [1], it was shown that the target response R is

given by
fT
R (1v) R (1) dt
R:.E_dz-zT e . 1)
Eo Re(O)

where Re(t) and Rh(r) are the time ambiguity functions for the signal and
the target, respectively. Since we are considering the target as a collec-

tion of M reflectors, each with reflection coefficient a, Rh(r) becomes

M M
R, (1) = i§1 j§1 a; o 8T + v, - ‘,-’ ()

R becomes

M M
i§1 j§1 a‘. ’j Re(t‘. - 1).)

R =
Re(O)

3)

and the response is a function only of the time ambiguity function of the

signal. For an RF pulse the ambiguity function is defined as

T-T Eo
R (1) = [ =— cos w,t cos wy(t+rddr 10 ()
e oY 0 0

T
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Figure 3 Eight point symmetric target.
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and is given by

EO 1 Sin Wo(zT-l'(l)
Re(Y) = ——S;—w (1 - ;'T'L)COS wo T % ZUOT vt >0 (5)
g oF TO—T—

Changing the pulse envelope from a r~ectangle to a half cycle of a cosine
wave gives us a nearly optimum signal, especially if the pulse is much
longer than the impulse response of the target. Assuming this condition,

the ambiguity function becomes

Sa 1=%
R (1) = _9,_f cos Bt cos wnt cos B(t+1) cos wo(t+r) dr 6)
e LA 0 0

where 8T = n/2 and T = 1/2 of the RF pulse duration. Upon integration this
yields
Eo

sin 2(w0+8)T sin 2(w0-BTT;

pac . sin o

20,7 o[ GlageadT : G (o837

EY *

COS wAT
[ A - %;l) cos wyt cos B + S%%_gl sin wg(2T-1) + -—5379— sin 8(2T-1)
0

0 + 0
4(8+w0)T 4(w0—B)T

o

sin [(B+w,)(2T=-1)] sin [(ws=8)(2T-1)]
>0 (7)

This is an exact, but difficult to evaluate quantity. Also, the evaluation
of the general ambiguity integral becomes very difficult if the envelope is

other than a simple shape. Because of these problems another method for

evaluating the ambiguity function is needed. If we consider the ambiguity
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function of the envelope shape alone, we get

E. T=v
R(1) k. cos Bt cos B(t+t) dt (8)
-T
5 i (< (O o, sin BQRT-(0) ”~
§ + Sin 287 a LaEey - s
28T

which can be multiplied by cos mot to give the two more significant terms of

the previous exact expression, since

B+ w, > w=B >> B 10)

0 0

if the pulse is long. Therefore, the ambiguity function of a RF pulse can
be approximated by the ambiguity function of its envelope multiplied by
cos mot. The envelope ambiguity function can be approximated by discrete
Fourier transform techniques, that allows the consideration of envelope
shapes which can not be integrated directly as well as providing computa-
tional efficiency.
| Figure 6 shows the response, as a function of frequency, of the stan-
dard ten point target to the rectangular RF pulse using the exact expres-
sion. Figure 7 shows the response of the same target using the cosine en-
velope pulse and the discrete Fourier transform approximation. Both curves
reached their Local maxima at fc=4.45165 GHz, but the cosine pulse attained
R = 19.585 dB, which is slightly Larger than the R = 19.455 dB attained by
the rectangular RF pulse.
3. PREDICTION OF OPTIMUM FREQUENCIES
In previous work we have seen detailed views of the target response as

a function of both angle of observation and of carrier frequency; however,
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there was no attempt to look at the response on a large scale to see if
there were any pattern or symmetry in the peak locations as a function of
frequency and of angle. 1If there were a pattern to the peaks then one would
be able to predict the optimum carrier frequency given the angle of observa-
tion.

In order to investigate this problem, the five point target, as shown
in Figure 2, was chosen because of its simplicity. Figures 8a-l show the
response of the target over a range of 120° and of 1.5 GHz. Looking closely
at rigures 8f and 8g, it is seen that the peaks follow definite curves which
appear to be symmetric about 6 = 900, and are approximately parabolic in
shape. This same structure appears in all of the graphs in Figure 8, and
could possibly be of use in tracking the target as it flies by the radar.
Figure 9 shows this same effect for the ten point target, although the peaks
aren't as regular or periodic.

In order to determine the functional form of these curves, and the ex-
act target response along these curves, data points were taken from these
plots and a least squares curve fit carried out. The first data set
corresponds to the curve through fc = 1.049375 GHz at ® = 90°, and the coef-
ficients a, in

fx) = zM: a_(x-90)™" an

n=1 "
were calculated, where x is in degrees and f(x) is in GHz. Table 1 shows
the coefficients of the polynomial for the first data set. Figure 10 shows
the fit of the curve to the sample points, shown as triangles. Figures 1

and 12 show the response of the target along this curve, the way that the
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radar would track the target.

Table 1 Coefficients for 15th order polynomial,
for first data set.

CFC 1) = 1.0493753e+00
CF(C 2) = =-8.9428955€E-18
CFC 3) = 1.6093651€-04
CFC &) = 8.4572425€-20
CFC 5) = 1.4897936E-08
CFC 6) = =2.3241124E-22
CFC 7) = 1.0072181€-11
CFC 8) =  2.8044422E-25
CFC 9) = -3.8445882E-15
CFQ(10) = =1.7257673E-28
CFC(11) = 9.3811860€E-19
CF(12) =  5.6498012E-32
CF(13) = =3.6857554E-23
CF(14) = =-9.3640872E-~36
CF(15) = =-4.5431032€-27
CFC16) = 6.1772326E-40

*x%x APPROXIMATION ACCEPTABLE w*#»
MAX ERROR = 2.2423E-02 AVE ERROR = 2.0687e-03
Observing that the higher order coefficients in the series are quite small
compared to others, perhaps a second or third order polynomial would be suf-
ficient to track the target. Table 2 shows the coefficients for the least

squares fit with a second degree polynomial.

Table 2 Coefficients for 2nd order polynomial,
for first data set.

CFC 1) = 9.8514683E-01
CFC 2) =  2.3154825E-16
CF( 3) =  2.8877466E-04

xxx APPROXIMATION ACCEPTABLE #w%
MAX ERROR = 2.6048E-01 AVE ERROR =  6.6897€-02

The target response along this curve is shown in Figure 13. We see that the

second order curve is not accurate enough to predict the optimum frequency
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Figure 14 Expanded view of target response,
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Figure 15 Expanded view of target response.
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given the angle of incidence. Figures 14 and 15 show detailed views of the
response along the curve of this first data set. It is seen that the peaks
are separated by large valleys in which the response is not great enough to
be significant.

Data was taken for a second curve to see if there was just a shift in
origin between the two curves. Table 3 shows the coefficients for this
curve and it is seen that there is quite a variation in the coefficient

values. This means that the curves aren't simply translations of a single

e, A A A

curve, but actually have different shapes. Figures 16 and 17 show the
response of the target along this second curve, with fc = 1.124 GHz at 8 =
900. The target responses in both cases are relatively periodic 1in the

range of data points; however, outside of this range the response becomes

very erratic due to the poor curve fit outside of the range of data.

Table 3 Coefficients for 15th order polynomial,
2nd data set.

BEST APPROX COEFS OF POWERS OF X

CFC 1) = 1.1241868€+00
CF( 2) = -2.6812787E-18
CFC 3) = 1.6621612E-04
CFC 4) = 2.6045791€-20
CF( 5) =  4.3842827E-08
CF( 6) = =7.2644725E-23
CFC 7) = =3.5055444E-11
CFC 8) =  8.8491020e-26
' CFC 9) = 3.1558381E-14
| CFC10) = =5.4969748E-29
‘ CF{11) = =1.3125499€-17
CF(12) = 1.8215026€E-32
CF(13) = 2.7098962E-21
CF(14) = -3.0685814E-36
CF(15) = =2.1311769E-25
CF(16) = 2.0676587E-40

**% APPROXIMATION ACCEPTABLE **x
MAX ERROR = 6.6921E-03 AVE ERROR = 1.4145€6-03

i-—_.__________________
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4. NONSYMMETRICAL TARGETS

In the previous discussion, we were considering the response of sym-
metric targets, but it is likely that the target will appear to have no ap-
parent symmetry when viewed by the radar. In S ases it is possible to
generate symmetry in the target model by resolving the target into two com-
ponents, each of which is symmetric about an axis, and when combined yield
the original target.

For instance, if we have the three point target as shown in Figure &,
it can be considered as being made up of two six point components. The sym-
metric component, shown in Figure 18, has 6 points each with a reflection
coefficient of 0.5. The antisymmetric component, Figure 19, has three
points of reflectivity 0.5 and has three points of reflectivity - 0.5. The
combination of the two components yields the original three point target.

The response of the three point target, Figure 20, doesn't show any ap-
parent symmetry, and appears to be quite complicated. The response of the
symmetric component, Figure 21a,b shows the general parabolic type curve
that we saw in the previous section. The response of the antisymmetric com-

ponent, Figure 22a,b, also shows the same curved structure as the symmetric

component; however, the curves are shifted into the valleys of the previous
curves. When the two components are combined, the peaks from one fall into

the valleys of the other, and we get the total curve of the Figure 20. It

is not apparent that the response is simply the sum of the two responses,
due to phase combination effects; however, it is clear from the plots that
there is a relationship between the response of the two components and the
original target's response. This suggests that the response of a complex
target can be considered to be a combination of the responses of simpler

targets which may have characteristics which would allow the optimum fre-

———————————
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Figure 18 Symmetric Component of three point target.
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Figure 19 Anti-symmetric Component of three point target.
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Figure 20 Response ot three point target.
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quency to be predicted given the incidence angle of the target.

We have examined target responses for a large number of cases as a
function of angle and frequency; however, the relationship between the in-
cident angle and time is not linear as a target flies by a radar installa-
tion. The functional form of this relationship depends upon the geometry of
the flight path of the target relative to the radar. In the following the
response of the radar system is shown as several different targets fly by
the radar. The geometry of the system is shown in Figure 23. The target is
assumed to be flying with a velocity of 1500 mph, and the radar has the tar-
get in view for 120 seconds. The angle of incidence ranges from 225° to
315°.

It is known from previous work that the five point target of Figure 2
shows a certain symmetry in its response, which could be utilized to predict
a frequency providing a near optimum return, given the angle of incidence.
The response of the target, as a function of time, when the carricr frequen-
cy is being predicted by the fifteenth order polynomial curve 1is shown in
Figure 24. This is contrasted to the response of the target when the car-
rier frequency is fixed at fc = 1.049375 GHz, a value which gives a maximum
return at 0 = 900, and which is shown in Figure 25. Both curves achieve
Rmax = 13.704 dB at 6 = 900, which is .276 dB less than the theoretical max-
imum of 13.98 dB for the five point target. The difference between these
two curves is that the fixed carrier signal only achieves this high value
for 5 peaks, all near 6 = 90°; whereas, when the carrier frequency is being
varied according to the fifteenth order polynomial, the peaks occur every
1.7 seconds throughout the entire time that the target is in view of the ra-

dar. This is quite an improvement over the fixed frequency system, but re-

quires that you generate the prediction curve for the target.
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The response of the six point nonsymmetric target as a function of fre-

quency, for 8 = 90° is shown in Figure 26. It is seen that the response

takes on its maximum values at four frequencies in the range of frequencies
presented. The response of the system is shown for the fixed frequency ra-
dar case, for each of these four frequencies, in Figures 27a-d. There
doesn't appear to be any correlation between these returns and there isn't
structure in the returns. Some technique of symmetry generation should be
used to generate the required curves for this target.
5. SUMMARY

This work has shown the presence of spatial symmetries which may allow
a radar system to predict a frequency which will give a near maximum
response as the target approaches the radar. If the target is complex then
the target may be resolved into simpler components, which have desirable
characteristics, and symmetries that may be exploited when tracking the tar-
get. An efficient method for the approximate evaluation of the time ambi-
guity functions for complex pulse envelope shapes has also been presented.
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MISSION
of
Rome Air Development Center

RADC plans and executes research, development, test and
delected acquisition programs in support of Command, Control
Communications and Intelligence (C31) activities. Technical
and engineering support within areas of technical competence
48 provdided to ESD Program 0ffices (POs) and other ESD
elements. The principal techndical mission areas are
communications, electromagnetic guidance and control, sur-
veillance of ground and aerospace obfects, intelligence data
collection and handling, information system technology,
Lonospherte propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility.




